Gruppe (Mathematik)

Aus Stupidedia, der sinnfreien Enzyklopädie!
Wechseln zu: Navigation, Suche

Achtung: Der folgende Text ist nur für Idioten Mathegenies geeignet. Deshalb gilt: Es existiert ein gewisses Interesse an der generellen Rezession der Applikation relativ einfacher Methoden komplementär zur Favorisierung adäquater komplexer Algorithmen. Für alle Mathegenies Idioten, die trozdem weiterlesen möchten: Warum einfach, wenn’s auch kompliziert geht?!

Gruppen

Eine Gruppe ist ein meist rein aus bösen Absichten gewähltes Thema eines absolut brillianten Lehrstrafvollstreckers, der versucht, damit seine überaus interessierten freiwilligen Zuhörer mit Ohrenkrebs zu infizieren.

Eine Gruppe ist nebst einem für die Zuhörer sinnlosen Thema auch ein mathematischer Begriff, der wie folgt definiert ist:

Es muss auf der Menge LKAGSDFLAKHSGD eine definierte Operation (zum Beispiel Blinddarmentfernung) geben, die mit den Elementen verwurstelt (häufig von einem Metzger oder Lehrer) eine innere Verknüpfung darstellt, d. h.: Element A * Element B = wieder ein Element aus der Menge LKAGSDFLAKHSGD.
Zusätzlich muss das Asozialgesetz gelten, ein neutrales Element (kann nicht zur Fortpflanzung verwendet werden) existieren, sowie ein Inverses (wandelt jedes Element in ein Neutrales um) vorhanden sein.

Problematik

Diese Erläuterungen waren jetzt wohl sehr intellektuell und wohl auch unverständlich (quasi wie direkt vom Lehrer); deshalb folgt in den folgenden Abschnitten jeweils ein (aus dem täglichen Leben für Mathematik missbrauchtes) Beispiel für eine Gruppe sowie ein (aus dem täglichen Leben für Biologie missbrauchtes) Beispiel für keine Gruppe.

Politiker

Da einige schlaue Mathematiker 3000 n. Chr. eine Gruppe so definiert haben, so dass es von da an natürlich Naturgesetz war, gibt es gewisse Probleme in Menschengruppen, zum Beispiel bei den Politikern, die es sich zum Ziel gemacht haben, eine Gruppe zu werden.

Die Politiker sind eine Gruppe, was sich bei Untersuchung aller Bedingungen, die für eine Gruppe bedingungslos erfüllt sein müssen, zeigt:

  1. Innere Verknüpfung
  • Symbol keep vote.svg Erfüllt, da Politiker sich nur unter ihresglechen fortpflanzen und häufig Darmprobleme haben, die eindeutig innen verknüpft sind.
  1. Das Asozialgesetz
  1. Neutrales Element
  • Symbol keep vote.svg Existiert fast immer – nämlich immer dann, wenn man zwei Politiker zusammensetzt, diese sich nicht einigen können und das Ergebniss somit für keinen der beiden befriedigend (= neutral) ist.
  1. Das Inverse
  • Symbol keep vote.svg Das Inverse hat die Aufgabe zu neutralisieren. Auf die Politiker bezogen ist dieses inverse Element gerade jeder einzelne, da er die Meinung des anderen neutralisieren wird.

Wenn zusätzlich noch das Kommunismusgesetz (zur Antidiskriminierung von Mathematikern auch Kommutativ genannt) gilt, spricht man von einer Nordkoreanischen Gruppe oder auch einer nach ihrem Erfinder U. Sowjet benannten Sowjetischen Gruppe.

Ergo wäre an diesem Beispiel gezeigt, dass tatsächlich mathematisch korrekte Gruppen existieren.

Hasen

  1. Innere Verknüpfung
  • Symbol keep vote.svg Ist auch hier gegeben da, Hase * Hase wieder einen Hasen geben wird.
  1. Das Asozialgesetz
  • Minus.svg Das Asozialgesetz ist hier nicht erfüllt, da Hasen bekanntlich in einer Herde leben.
  1. Neutrales Element
  • Minus.svg Das Neutrale Element bezüglich Hase ist Futter. Es verändert den Hasen jedoch nicht (oder nur so geringfügig, dass es niemand merkt).
  1. Das Inverse
  • Minus.svg Das Inverse Element bezüglich Hase ist ganz offensichtlich der Fuchs, da er den Hasen in Futter verwandelt. Da der Fuchs aber nicht in der Grundmenge der HASEN enthalten ist, gibt es logischerweise kein Inverses Element!

Daraus folgt: Hasen sind offensichtlich keine Gruppe, obwohl sie in Gruppen leben!

Schlussfolgerungen

Dass Hasen keine Gruppe bilden, jedoch in Gruppen leben, ist verwirrend, und sogar die Natur persönlich kann dieses Phänomen nicht erklären. In einer Pressekonferenz sagte sie dazu vor versammelten Medien: „Im Namen der Mutter Erde: Die Mathematiker haben mir hier einen dicken Strich durch die Rechnung gemacht, und ich muss mein ganzes Konzept wohl neu überarbeiten. Ich kann dazu nicht mehr sagen, als dass ich zusammen mit meinen Beratern mit Hochdruck an einer zufriedenstellenden Lösung arbeite.“

Da dieses Problem bis heute nicht gelöst wurde, was wohl auch in Zukunft so bleiben wird, ist damit zu rechnen, dass Mathematiklehrer wohl noch lange auf dieses brisante Mittel zur Verwirrung von Schülern zurückgreifen werden, um sie so zu verwirren, dass sie an nichts anderes mehr denken können als an genau dieses Problem, um anschließend die Weltherrschaft zu übernehmen.

Die deutsche Bundeskanzlerin (unter anderem auch bekannt geworden durch die Rolle des Gollum im Film Der Herr der Ringe), die diese Problematik schon früh in einem frühen Disney-Film erkannte, sagte dazu: „Im Namen aller, wehrt euch gegen diese Mathematiklehrer, die mir den Thron klauen wollen!“